Enhanced Survival of Plasmodium-Infected Mosquitoes during Starvation
نویسندگان
چکیده
Plasmodium spp. are pathogenic to their vertebrate hosts and also apparently, impose a fitness cost on their insect vectors. We show here, however, that Plasmodium-infected mosquitoes survive starvation significantly better than uninfected mosquitoes. This survival advantage during starvation is associated with higher energy resource storage that infected mosquitoes accumulate during period of Plasmodium oocyst development. Microarray analysis revealed that the metabolism of sated mosquitoes is altered in the presence of rapidly growing oocysts, including the down-regulation of several enzymes involved in carbohydrate catabolism. In addition, enhanced expression of several insulin-like peptides was observed in Plasmodium-infected mosquitoes. Blocking insulin-like signaling pathway resulted in impaired Plasmodium development. We conclude that Plasmodium infection alters metabolic pathways in mosquitoes, epitomized by enhanced insulin-like signaling - thereby conferring a survival advantage to the insects during periods of starvation. Manipulation of this pathway might provide new strategies to influence the ability of mosquitoes to survive and transmit the protozoa that cause malaria.
منابع مشابه
Natural malaria infection reduces starvation resistance of nutritionally stressed mosquitoes.
In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly bee...
متن کاملThe energetic budget of Anopheles stephensi infected with Plasmodium chabaudi: is energy depletion a mechanism for virulence?
Evidence continues to accumulate showing that the malaria parasites (Plasmodium spp.) reduce the survival and fecundity of their mosquito vectors (Anopheles spp.). Our ability to identify the possible epidemiological and evolutionary consequences of these parasite-induced fitness reductions has been hampered by a poor understanding of the physiological basis of these shifts. Here, we explore wh...
متن کاملPlasmodium infection decreases fecundity and increases survival of mosquitoes.
Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adapti...
متن کاملEffect of infection by Plasmodium falciparum on the melanization immune response of Anopheles gambiae.
Melanization is an immune response of mosquitoes that could potentially limit Plasmodium development. That mosquitoes rarely melanize Plasmodium falciparum in natural populations might result from immuno-suppression by the parasite, as has been observed in Aedes aegypti mosquitoes infected by Plasmodium gallinaceum. We tested this possibility in Anopheles gambiae mosquitoes infected by P. falci...
متن کاملTransgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood.
The introduction of genes that impair Plasmodium development into mosquito populations is a strategy being considered for malaria control. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this approach. We have previously shown that anopheline mosquitoes expressing the SM1 peptide in the midgut lumen are impaired for transmission of Plasmodium be...
متن کامل